Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 92(2): e0050423, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38193711

RESUMO

The intracellular protozoan parasite Leishmania donovani causes debilitating human diseases that involve visceral and dermal manifestations. Type 3 interferons (IFNs), also referred to as lambda IFNs (IFNL, IFN-L, or IFN-λ), are known to play protective roles against intracellular pathogens at the epithelial surfaces. Herein, we show that L. donovani induces IFN-λ3 in human as well as mouse cell line-derived macrophages. Interestingly, IFN-λ3 treatment significantly decreased parasite load in infected cells, mainly by increasing reactive oxygen species production. Microscopic examination showed that IFN-λ3 inhibited uptake but not replication, while the phagocytic ability of the cells was not affected. This was confirmed by experiments that showed that IFN-λ3 could decrease parasite load only when added to the medium at earlier time points, either during or soon after parasite uptake, but had no effect on parasite load when added at 24 h post-infection, suggesting that an early event during parasite uptake was targeted. Furthermore, the parasites could overcome the inhibitory effect of IFN-λ3, which was added at earlier time points, within 2-3 days post-infection. BALB/c mice treated with IFN-λ3 before infection led to a significant increase in expression of IL-4 and ARG1 post-infection in the spleen and liver, respectively, and to different pathological changes, especially in the liver, but not to changes in parasite load. Treatment with IFN-λ3 during infection did not decrease the parasite load in the spleen either. However, IFN-λ3 was significantly increased in the sera of visceral leishmaniasis patients, and the IFNL genetic variant rs12979860 was significantly associated with susceptibility to leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Parasitos , Animais , Humanos , Camundongos , Linhagem Celular , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Macrófagos/parasitologia , Camundongos Endogâmicos BALB C
2.
J Med Virol ; 95(2): e28557, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755367

RESUMO

Dengue is a vector-borne viral disease caused by a Flavivirus whereas the COVID-19 pandemic was caused by a highly contagious virus, SARS-CoV-2 belonging to the family Coronaviridae. However, COVID-19 severity was observably less in dengue-endemic countries and vice versa especially during the active years of the pandemic (2019-2021). We observed that dengue virus (DENV) antibodies (Abs) could cross-react with SARS-CoV-2 spike antigen. This resulted in SARS-CoV-2 false positivity by rapid Ab test kits. DENV Abs binding to SARS-CoV-2 receptor-binding domain (and the reverse scenario), as revealed by docking studies further validated DENV and SARS-CoV-2 cross-reactivity. Finally, SARS-CoV-2 Abs were found to cross-neutralize DENV1 and DENV2 in virus neutralization test (VNT). Abs to other pathogens like Plasmodium were also cross-reactive but non-neutralizing for SARS-CoV-2. Here, we analyze the existing data on SARS-CoV-2 cross-reactivity with other pathogens, especially dengue to assess its impact on health (cross-protection?) and differential sero-diagnosis/surveillance.


Assuntos
COVID-19 , Vírus da Dengue , Dengue , Humanos , Anticorpos Neutralizantes , SARS-CoV-2 , Pandemias , Anticorpos Antivirais , Reações Cruzadas
3.
Molecules ; 27(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500313

RESUMO

Natural products are being targeted as alternative anticancer agents due to their non-toxic and safe nature. The present study was conducted to explore the in vitro anticancer potential of Justicia adhatoda (J. adhatoda) leaf extract. The methanolic leaf extract was prepared, and the phytochemicals and antioxidant potential were determined by LCMS analysis and DPPH radical scavenging assay, respectively. A docking study performed with five major alkaloidal phytoconstituents showed that they had a good binding affinity towards the active site of NF-κB. Cell viability assay was carried out in five different cell lines, and the extract exhibited the highest cytotoxicity in MCF-7, a breast cancer cell line. Extract-treated cells showed a significant increase in nitric oxide and reactive oxygen species production. Cell cycle analysis showed an arrest in cell growth at the Sub-G0 phase. The extract successfully inhibited cell migration and colony formation and altered mitochondrial membrane potential. The activities of superoxide dismutase and glutathione were also found to decrease in a dose-dependent manner. The percentage of apoptotic cells was found to increase in a dose-dependent manner in MCF-7 cells. The expressions of caspase-3, Bax, and cleaved-PARP were increased in extract-treated cells. An increase in the expression of NF-κB was found in the cytoplasm in extract-treated cells. J. adhatoda leaf extract showed a potential anticancer effect in MCF-7 cells.


Assuntos
Neoplasias da Mama , Justicia , Humanos , Feminino , Justicia/química , Metanol/química , NF-kappa B/farmacologia , Neoplasias da Mama/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células MCF-7 , Folhas de Planta , Apoptose
4.
3 Biotech ; 12(9): 227, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35982759

RESUMO

SARS-CoV-2, the newly emerged virus of the Coronaviridae family is causing havoc worldwide. The novel coronavirus 2019 was first reported in Wuhan, China marked as the third highly infectious pathogenic virus of the twenty-first century. The typical manifestations of COVID-19 include cough, sore throat, fever, fatigue, loss of sense of taste and difficulties in breathing. Large numbers of SARS-CoV-2 infected patients have mild to moderate symptoms, however severe and life-threatening cases occur in about 5-10% of infections with an approximately 2% mortality rate. For the treatment of SARS-CoV-2, the use of neutralizing monoclonal antibodies (mAbs) could be one approach. The receptor binding domain (RBD) and N-terminal domain (NTD) situated on the peak of the spike protein (S-Protein) of SARS-CoV-2 are immunogenic in nature, therefore, can be targeted by neutralizing monoclonal antibodies. Several bioinformatics approaches highlight the identification of novel SARS-CoV-2 epitopes which can be targeted for the development of COVID-19 therapeutics. Here we present a summary of neutralizing mAbs isolated from COVID-19 infected patients which are anticipated to be a better therapeutic alternative against SARS-CoV-2. However, provided the vast escalation of the disease worldwide affecting people from all strata, affording expensive mAb therapy will not be feasible. Hence other strategies are also being employed to find suitable vaccine candidates and antivirals against SARS-CoV-2 that can be made easily available to the population.

5.
Pathog Dis ; 79(8)2021 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-34601577

RESUMO

The fascinating discovery of the first giant virus, Acanthamoeba polyphaga mimivirus (APMV), belonging to the family Mimiviridae in 2008, and its associated virophage, Sputnik, have left the world of microbiology awestruck. To date, about 18 virophages have been isolated from different environmental sources. With their unique feature of resisting host cell infection and lysis by giant viruses, analogous to bacteriophage, they have been assigned under the family Lavidaviridae. Genome of T-27, icosahedral-shaped, non-enveloped virophages, consist of dsDNA encoding four proteins, namely, major capsid protein, minor capsid protein, ATPase and cysteine protease, which are essential in the formation and assembly of new virophage particles during replication. A few virophage genomes have been observed to contain additional sequences like PolB, ZnR and S3H. Another interesting characteristic of virophage is that Mimivirus lineage A is immune to infection by the Zamilon virophage through a phenomenon termed MIMIVIRE, resembling the CRISPR-Cas mechanism in bacteria. Based on the fact that giant viruses have been found in clinical samples of hospital-acquired pneumonia and rheumatoid arthritis patients, virophages have opened a novel era in the search for cures of various diseases. This article aims to study the prospective role of virophages in the future of human therapeutics.


Assuntos
Antibiose , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Virófagos/fisiologia , Amoeba/virologia , Evolução Biológica , Genoma Viral , Genômica/métodos , Vírus Gigantes/fisiologia , Humanos , Interações Microbianas , Terapia por Fagos/métodos , Virófagos/classificação , Virófagos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...